library(patchwork)
library(mcmcplots)
library(ggmcmc)
library(tidybayes)
library(tmap)
tmap_mode("plot")
library(terra)
library(sf)
sf::sf_use_s2(FALSE)
library(tidyverse)
# options
options(scipen = 999)Nasua nasua Model Outputs
Model outputs for Nasua nasua.
- R Libraries
- Basemaps
equalareaCRS <- '+proj=laea +lon_0=-73.125 +lat_0=0 +datum=WGS84 +units=m +no_defs'
latam <- st_read('data/latam.gpkg', layer = 'latam', quiet = T)
countries <- st_read('data/latam.gpkg', layer = 'countries', quiet = T)
latam_land <- st_read('data/latam.gpkg', layer = 'latam_land', quiet = T)
latam_raster <- rast('data/latam_raster.tif', lyrs='latam')
latam_countries <- rast('data/latam_raster.tif', lyrs='countries')
nnasua_IUCN <- sf::st_read('big_data/nnasua_IUCN.shp', quiet = T) %>% sf::st_transform(crs=equalareaCRS)- Species data and covariates
# Presence-absence data
nnasua_expert_blob_time1 <- readRDS('data/species_POPA_data/nnasua_expert_blob_time1.rds')
nnasua_expert_blob_time2 <- readRDS('data/species_POPA_data/nnasua_expert_blob_time2.rds')
PA_time1 <- readRDS('data/species_POPA_data/data_nnasua_PA_time1.rds') %>%
cbind(expert=nnasua_expert_blob_time1) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(expert)) # remove NA's
PA_time2 <- readRDS('data/species_POPA_data/data_nnasua_PA_time2.rds') %>%
cbind(expert=nnasua_expert_blob_time2) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(expert)) # remove NA's
# Presence-only data
nnasua_expert_gridcell <- readRDS('data/species_POPA_data/nnasua_expert_gridcell.rds')
PO_time1 <- readRDS('data/species_POPA_data/data_nnasua_PO_time1.rds') %>%
cbind(expert=nnasua_expert_gridcell$dist_exprt) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(acce) & !is.na(count) & !is.na(expert)) # remove NA's
PO_time2 <- readRDS('data/species_POPA_data/data_nnasua_PO_time2.rds') %>%
cbind(expert=nnasua_expert_gridcell$dist_exprt) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(acce) & !is.na(count) & !is.na(expert)) # remove NA's
PA_time1_time2 <- rbind(PA_time1 %>% mutate(time=1), PA_time2 %>% mutate(time=2))
PO_time1_time2 <- rbind(PO_time1 %>% mutate(time=1), PO_time2 %>% mutate(time=2)) - Read model
fitted.model <- readRDS('D:/Flo/JAGS_models/nnasua_model.rds') # deleted after model output
# as.mcmc.rjags converts an rjags Object to an mcmc or mcmc.list Object.
fitted.model.mcmc <- mcmcplots::as.mcmc.rjags(fitted.model)Model diagnostics
The fitted.model is an object of class rjags.
Code
# labels for the linear predictor `b`
L.fitted.model.b <- plab("b",
list(Covariate = c('Intercept',
'env.bio_10',
'env.bio_13',
'env.npp',
'env.nontree',
'expert',
sprintf('spline%i', 1:10)))) # changes with n.spl
# tibble object for the linear predictor `b` extracted from the rjags fitted model
fitted.model.ggs.b <- ggmcmc::ggs(fitted.model.mcmc,
par_labels = L.fitted.model.b,
family="^b\\[")
# diagnostics
ggmcmc::ggmcmc(fitted.model.ggs.b, file="docs/nnasua_model_diagnostics.pdf", param_page=3)Plotting histograms
Plotting density plots
Plotting traceplots
Plotting running means
Plotting comparison of partial and full chain
Plotting autocorrelation plots
Plotting crosscorrelation plot
Plotting Potential Scale Reduction Factors
Plotting shrinkage of Potential Scale Reduction Factors
Plotting Number of effective independent draws
Plotting Geweke Diagnostic
Plotting caterpillar plot
Time taken to generate the report: 33 seconds.
Traceplot
Code
ggs_traceplot(fitted.model.ggs.b)
Rhat
Code
ggs_Rhat(fitted.model.ggs.b)
Probability of occurrence of Nasua nasua
For each period: time1 and time2, and their difference (time2-time1)
Code
P.pred <- fitted.model$BUGSoutput$mean$P.pred
preds <- data.frame(PO_time1_time2, P.pred)
preds1 <- preds[preds$time == 1,]
preds2 <- preds[preds$time == 2,]
rast <- latam_raster
rast[] <- NA
rast1 <- rast2 <- terra::rast(rast)
rast1[preds1$pixel] <- preds1$P.pred
rast2[preds2$pixel] <- preds2$P.pred
rast1 <- rast1 %>% terra::mask(., vect(latam_land))
rast2 <- rast2 %>% terra::mask(., vect(latam_land))
names(rast1) <- 'time1'
names(rast2) <- 'time2'
# Map of the of the probability of occurrence in the first period (time1: 2000-2013)
time1MAP <- tm_graticules(alpha = 0.3) +
tm_shape(rast1) +
tm_raster(palette = 'Oranges', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the of the probability of occurrence in the second period (time2: 2014-2021)
time2MAP <- tm_graticules(alpha = 0.3) +
tm_shape(rast2) +
tm_raster(palette = 'Purples', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the of the change in the probability of occurrence (time2 - time1)
diffMAP <- tm_graticules(alpha = 0.3) +
tm_shape(rast2 - rast1) +
tm_raster(palette = 'PiYG', midpoint = 0, style= "cont", ) +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
time1MAP
Code
time2MAP
Code
diffMAP
Code
tmap::tmap_save(tm = time1MAP, filename = 'docs/figs/time1MAP_SR_nnasua.svg', device = svglite::svglite)
tmap::tmap_save(tm = time2MAP, filename = 'docs/figs/time2MAP_SR_nnasua.svg', device = svglite::svglite)Standard deviation (SD) of the probability of occurrence of Nasua nasua
Code
P.pred.sd <- fitted.model$BUGSoutput$sd$P.pred
preds.sd <- data.frame(PO_time1_time2, P.pred.sd)
preds1.sd <- preds.sd[preds.sd$time == 1,]
preds2.sd <- preds.sd[preds.sd$time == 2,]
rast.sd <- terra::rast(latam_raster)
rast.sd[] <- NA
rast1.sd <- rast2.sd <- terra::rast(rast.sd)
rast1.sd[preds1.sd$pixel] <- preds1.sd$P.pred.sd
rast2.sd[preds2.sd$pixel] <- preds2.sd$P.pred.sd
rast1.sd <- rast1.sd %>% terra::mask(., vect(latam_land))
rast2.sd <- rast2.sd %>% terra::mask(., vect(latam_land))
names(rast1.sd) <- 'time1.sd'
names(rast2.sd) <- 'time2.sd'
# Map of the SD of the probability of occurrence of the area time1
time1MAP.sd <- tm_graticules(alpha = 0.3) +
tm_shape(rast1.sd) +
tm_raster(palette = 'Oranges', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the SD of the probability of occurrence of the area time2
time2MAP.sd <- tm_graticules(alpha = 0.3) +
tm_shape(rast2.sd) +
tm_raster(palette = 'Purples', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
time1MAP.sd
Code
time2MAP.sd
Bivariate map
Map of the difference including the Standard deviation (SD) of the probability of occurrence as the transparency of the layer.
Code
library(cols4all)
library(pals)
library(classInt)
library(stars)
bivcol = function(pal, nx = 3, ny = 3){
tit = substitute(pal)
if (is.function(pal))
pal = pal()
ncol = length(pal)
if (missing(nx))
nx = sqrt(ncol)
if (missing(ny))
ny = nx
image(matrix(1:ncol, nrow = ny), axes = FALSE, col = pal, asp = 1)
mtext(tit)
}
nnasua.pal.pu_gn_bivd <- c4a("pu_gn_bivd", n=3, m=5)
nnasua.pal <- c(t(apply(nnasua.pal.pu_gn_bivd, 2, rev)))
###
pred.P.sd <- fitted.model$BUGSoutput$sd$delta.Grid
preds.sd <- data.frame(PO_time1_time2, pred.P.sd=rep(pred.P.sd, 2))
rast.sd <- terra::rast(latam_raster)
rast.sd[] <- NA
rast.sd <- terra::rast(rast.sd)
rast.sd[preds.sd$pixel] <- preds.sd$pred.P.sd
rast.sd <- rast.sd %>% terra::mask(., vect(latam_land))
names(rast.sd) <- c('diff')
# Map of the SD of the probability of occurrence of the area time2
delta.GridMAP.sd <- tm_graticules(alpha = 0.3) +
tm_shape(rast.sd) +
tm_raster(palette = 'Greys', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
delta.GridMAP.sd
Code
rast.stars <- c(stars::st_as_stars(rast2-rast1), stars::st_as_stars(rast.sd))
names(rast.stars) <- c('diff', 'sd')
par(mfrow=c(2,2))
hist(rast1)
hist(rast2)
hist(rast.stars['diff'])
hist(rast.stars['sd'])
Code
par(mfrow=c(1,1))
add_new_var = function(x, var1, var2, nbins1, nbins2, style1, style2,fixedBreaks1, fixedBreaks2){
class1 = suppressWarnings(findCols(classIntervals(c(x[[var1]]),
n = nbins1,
style = style1,
fixedBreaks1=fixedBreaks1)))
class2 = suppressWarnings(findCols(classIntervals(c(x[[var2]]),
n = nbins2,
style = style2,
fixedBreaks=fixedBreaks2)))
x$new_var = class1 + nbins1 * (class2 - 1)
return(x)
}
rast.bivariate = add_new_var(rast.stars,
var1 = "diff",
var2 = "sd",
nbins1 = 3,
nbins2 = 5,
style1 = "fixed",
fixedBreaks1=c(-1,-0.05, 0.05, 1),
style2 = "fixed",
fixedBreaks2=c(0, 0.05, 0.1, 0.15, 0.2, 0.3))
# See missing classes and update palette
all_classes <- seq(1,15,1)
rast_classes <- as_tibble(rast.bivariate['new_var']) %>%
distinct(new_var) %>% filter(!is.na(new_var)) %>% pull()
absent_classes <- all_classes[!(all_classes %in% rast_classes)]
if (length(absent_classes)==0){
nnasua.new.pal <- nnasua.pal
} else nnasua.new.pal <- nnasua.pal[-c(absent_classes)]
# Map of the of the change in the probability of occurrence (time2 - time1)
# according to the mean SD of the probability of occurrence (mean(time2.sd, time1.sd))
diffMAP.SD <- tm_graticules(alpha = 0.3) +
tm_shape(rast.bivariate) +
tm_raster("new_var", style= "cat", palette = nnasua.new.pal) +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
diffMAP.SD
Countries thinning
Code
countryLevels <- cats(latam_countries)[[1]] #%>% mutate(value=value+1)
rasterLevels <- levels(as.factor(PO_time1_time2$country))
countries_latam <- countryLevels %>% filter(value %in% rasterLevels) %>%
mutate(numLevel=1:length(rasterLevels)) %>% rename(country=countries)
fitted.model.ggs.alpha <- ggmcmc::ggs(fitted.model.mcmc, family="^alpha")
ci.alpha <- ci(fitted.model.ggs.alpha)
country_acce <- bind_rows(ci.alpha[length(rasterLevels)+1,],
tibble(countries_latam, ci.alpha[1:length(rasterLevels),])) %>%
dplyr::select(-c(value, numLevel))
#accessibility range for predictions
accessValues <- seq (0,0.5,by=0.01)
#get common steepness
commonSlope <- country_acce$median[country_acce$Parameter=="alpha1"]
#write function to get predictions for a given country
getPreds <- function(country){
#get country intercept
countryIntercept = country_acce$median[country_acce$country==country & !is.na(country_acce$country)]
#return all info
data.frame(country = country,
access = accessValues,
preds= countryIntercept * exp(((-1 * commonSlope)*accessValues)))
}
allPredictions <- country_acce %>%
filter(!is.na(country)) %>%
filter(country %in% countries$iso_a2) %>%
pull(country) %>%
map_dfr(getPreds)
allPredictions <- left_join(as_tibble(allPredictions),
countries %>% select(country=iso_a2, name_en) %>%
st_drop_geometry(), by='country') %>%
filter(country!='VG' & country!= 'TT' & country!= 'FK' & country!='AW')
# just for exploration - easier to see which county is doing which
acce_country <- ggplot(allPredictions)+
geom_line(aes(x = access, y = preds, colour = name_en), show.legend = F) +
viridis::scale_color_viridis(option = 'turbo', discrete=TRUE) +
theme_bw() +
facet_wrap(~name_en, ncol = 5) +
ylab("Probability of retention") + xlab("Accessibility")
acce_country
Code
# all countries
acce_allcountries <- ggplot(allPredictions) +
geom_line(aes(x = access, y = preds, colour = name_en), show.legend = F)+
viridis::scale_color_viridis(option = 'turbo', discrete=TRUE) +
theme_bw() +
ylab("Probability of retention") + xlab("Accessibility")
acce_allcountries
Effect of the environmental covariates on the intensity of the point process
Code
caterpiller.params <- fitted.model.ggs.b %>%
filter(grepl('env', Parameter)) %>%
mutate(Parameter=as.factor(ifelse(Parameter=='env.bio_10', 'mean temperature of warmest quarter',
ifelse(Parameter=='env.bio_13', 'precipitation of wettest month',
ifelse(Parameter=='env.npp', 'npp',
ifelse(Parameter=='env.nontree', 'percentage of no tree cover', Parameter)))))) %>%
ggs_caterpillar(line=0) +
theme_light() +
labs(y='', x='posterior densities')
caterpiller.params
Boxplot of posterior densities of the predicted area in both time periods
Code
fitted.model.ggs.A <- ggmcmc::ggs(fitted.model.mcmc, family="^A")
# CI
ggmcmc::ci(fitted.model.ggs.A)# A tibble: 2 x 6
Parameter low Low median High high
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A.time1 1491. 1496. 1520. 1543. 1547.
2 A.time2 1464. 1468. 1489. 1509. 1514.
Code
fitted.model$BUGSoutput$summary['A.time2',] mean sd 2.5% 25% 50% 75%
1488.710651 12.597151 1464.143348 1480.292103 1488.667912 1497.046297
97.5% Rhat n.eff
1513.661840 1.015558 140.000000
Code
# fitted.model$BUGSoutput$mean$A.time2
fitted.model$BUGSoutput$summary['A.time1',] mean sd 2.5% 25% 50% 75%
1519.444754 14.271148 1491.153586 1509.785758 1519.615449 1529.336054
97.5% Rhat n.eff
1546.878609 1.022265 96.000000
Code
# fitted.model$BUGSoutput$mean$A.time1
# boxplot
range.boxplot <- ggs_caterpillar(fitted.model.ggs.A, horizontal=FALSE, ) + theme_light(base_size = 14) +
labs(y='', x='Area (number of 100x100 km grid-cells)')
range.boxplot
Code
# CI
range.ci <- ggmcmc::ci(fitted.model.ggs.A) %>%
mutate(Parameter = fct_rev(Parameter)) %>%
ggplot(aes(x = Parameter, y = median, ymin = low, ymax = high)) +
geom_boxplot(orientation = 'y', size=1) +
stat_summary(fun=mean, geom="point",
shape=19, size=4, show.legend=FALSE) +
theme_light(base_size = 14) +
labs(x='', y='Area (number of 100x100 km grid-cells)')
range.ci
posterior distribution of range change (Area).
Code
fitted.model.ggs.delta.A <- ggmcmc::ggs(fitted.model.mcmc, family="^delta.A")
# CI
ggmcmc::ci(fitted.model.ggs.delta.A)# A tibble: 1 x 6
Parameter low Low median High high
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 delta.A -47.8 -44.7 -30.8 -16.6 -13.7
Code
fitted.model$BUGSoutput$summary['delta.A',] mean sd 2.5% 25% 50% 75% 97.5%
-30.734103 8.689850 -47.783500 -36.493851 -30.805533 -25.018297 -13.658100
Rhat n.eff
1.013398 260.000000
Code
#densitiy
delta.A.plot <- fitted.model.ggs.delta.A %>% group_by(Iteration) %>%
summarise(area=median(value)) %>%
ggplot(aes(area)) +
geom_density(col='grey30', fill='black', alpha = 0.3, size=1) +
scale_y_continuous(breaks=c(0,0.0025,0.005, 0.0075, 0.01, 0.0125)) +
geom_abline(intercept = 0, slope=1, linetype=2, size=1) +
# vertical lines at 95% CI
stat_boxplot(geom = "vline", aes(xintercept = ..xmax..), size=0.5, col='red') +
stat_boxplot(geom = "vline", aes(xintercept = ..xmiddle..), size=0.5, col='red') +
stat_boxplot(geom = "vline", aes(xintercept = ..xmin..), size=0.5, col='red') +
theme_light(base_size = 14, base_line_size = 0.2) +
labs(y='Probability density', x=expression(Delta*'Area'))
delta.A.plot
posterior predictive checks
PO
Expected vs observed
Code
counts <- PO_time1_time2$count
counts.new <- fitted.model$BUGSoutput$mean$y.PO.new
lambda <- fitted.model$BUGSoutput$mean$lambda
pred.PO <- data.frame(counts, counts.new, lambda)
# fitted.model$BUGSoutput$summary['fit.PO',]
# fitted.model$BUGSoutput$summary['fit.PO.new',]
pp.PO <- ggplot(pred.PO, aes(x=counts, y=lambda), fill=NA) +
geom_point(size=3, shape=21) +
xlim(c(0, 100)) +
ylim(c(0, 50)) +
labs(x='observed', y=expression(lambda), title='Presence-only') +
geom_abline(col='red') +
theme_bw()
pp.PO.log10 <- ggplot(pred.PO, aes(x=counts, y=lambda), fill=NA) +
geom_point(size=3, shape=21) +
scale_x_log10(limits=c(0.01, 100)) +
scale_y_log10(limits=c(0.01, 100)) +
coord_fixed(ratio=1) +
labs(x='observed (log scale)', y=expression(lambda*'(log scale)'), title='log10 scale') +
geom_abline(col='red') +
theme_bw()
pp.PO | pp.PO.log10
Residual Diagnostics
Code
library(DHARMa)
simulations <- fitted.model$BUGSoutput$sims.list$y.PO.new
pred <- apply(fitted.model$BUGSoutput$sims.list$lambda, 2, median)
#dim(simulations)
sim <- createDHARMa(simulatedResponse = t(simulations),
observedResponse = PO_time1_time2$count,
fittedPredictedResponse = pred,
integerResponse = T)
plotSimulatedResiduals(sim)
Grid-level change
Code
range_change <- as_tibble(rast2[PO_time2$pixel] - rast1[PO_time2$pixel]) %>% rename(range=time2)
numRecord_change <- as_tibble(PO_time2$count - PO_time1$count) %>% rename(numRecord=value)
grid.level.change <- bind_cols(range_change, numRecord_change) %>%
mutate(nonzero=ifelse(numRecord==0, '0', '>=1')) %>%
ggplot() +
geom_point(aes(y=range, x=numRecord, col=nonzero), size=1) +
geom_vline(xintercept=0, linetype=2, size=0.5) +
geom_hline(yintercept=0, linetype=2, size=0.5) +
labs(y = expression('Predicted grid-level range change (Ppred'['time2']*'-Ppred'['time1']*')'),
x= expression('Grid-level range change in number of records (Nrecords'['time2']*'-Nrecords'['time1']*')'),
col = 'Number of records\nper grid cell') +
theme_bw(base_size = 14)
grid.level.change
PA
Tjur R2
Code
presabs <- PA_time1_time2$presabs
psi <- fitted.model$BUGSoutput$mean$psi
pred.PA <- data.frame(presabs, psi)
r2_tjur <- round(fitted.model$BUGSoutput$mean$r2_tjur, 3)
fitted.model$BUGSoutput$summary['r2_tjur',] mean sd 2.5% 25% 50%
0.233141219 0.002806291 0.227375409 0.231300959 0.233205964
75% 97.5% Rhat n.eff
0.235059962 0.238454896 1.001126633 13000.000000000
Code
pp.PA <- ggplot(pred.PA, aes(x=presabs, y=psi, col=presabs)) +
geom_jitter(height = 0, width = .05, size=1) +
scale_x_continuous(breaks=seq(0,1,0.25)) + scale_colour_binned() +
labs(x='observed', y=expression(psi), title='Presence-absence') +
stat_summary(
fun = mean,
geom = "errorbar",
aes(ymax = ..y.., ymin = ..y..),
width = 0.2, size=2) +
theme_bw() + theme(legend.position = 'none')+
annotate(geom="text", x=0.5, y=0.5,
label=paste('Tjur R-squared = ', r2_tjur))
pp.PA
AUC
Code
auc.sens.fpr <- bind_cols(sens=fitted.model$BUGSoutput$mean$sens,
fpr=fitted.model$BUGSoutput$mean$fpr)
auc.value <- round(fitted.model$BUGSoutput$mean$auc, 3)
ggplot(auc.sens.fpr, aes(fpr, sens)) +
geom_line() + geom_point() +
labs(x='1 - Specificity', y='Sensitivity') +
annotate(geom="text", x=0.5, y=0.5,
label=paste('AUC = ', auc.value)) +
theme_bw()
Code
fitted.model$BUGSoutput$summary['auc',] mean sd 2.5% 25% 50%
0.640146868 0.002549939 0.634830350 0.638513400 0.640242881
75% 97.5% Rhat n.eff
0.641882328 0.644912060 1.003340141 850.000000000