library(patchwork)
library(mcmcplots)
library(ggmcmc)
library(tidybayes)
library(tmap)
tmap_mode("plot")
library(terra)
library(sf)
::sf_use_s2(FALSE)
sflibrary(tidyverse)
# options
options(scipen = 999)
Nasua nasua Model Outputs
Model outputs for Nasua nasua.
- R Libraries
- Basemaps
<- '+proj=laea +lon_0=-73.125 +lat_0=0 +datum=WGS84 +units=m +no_defs'
equalareaCRS <- st_read('data/latam.gpkg', layer = 'latam', quiet = T)
latam <- st_read('data/latam.gpkg', layer = 'countries', quiet = T)
countries <- st_read('data/latam.gpkg', layer = 'latam_land', quiet = T)
latam_land <- rast('data/latam_raster.tif', lyrs='latam')
latam_raster <- rast('data/latam_raster.tif', lyrs='countries')
latam_countries
<- sf::st_read('big_data/nnasua_IUCN.shp', quiet = T) %>% sf::st_transform(crs=equalareaCRS) nnasua_IUCN
- Species data and covariates
# Presence-absence data
<- readRDS('data/species_POPA_data/nnasua_expert_blob_time1.rds')
nnasua_expert_blob_time1 <- readRDS('data/species_POPA_data/nnasua_expert_blob_time2.rds')
nnasua_expert_blob_time2
<- readRDS('data/species_POPA_data/data_nnasua_PA_time1.rds') %>%
PA_time1 cbind(expert=nnasua_expert_blob_time1) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(expert)) # remove NA's
<- readRDS('data/species_POPA_data/data_nnasua_PA_time2.rds') %>%
PA_time2 cbind(expert=nnasua_expert_blob_time2) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(expert)) # remove NA's
# Presence-only data
<- readRDS('data/species_POPA_data/nnasua_expert_gridcell.rds')
nnasua_expert_gridcell
<- readRDS('data/species_POPA_data/data_nnasua_PO_time1.rds') %>%
PO_time1 cbind(expert=nnasua_expert_gridcell$dist_exprt) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(acce) & !is.na(count) & !is.na(expert)) # remove NA's
<- readRDS('data/species_POPA_data/data_nnasua_PO_time2.rds') %>%
PO_time2 cbind(expert=nnasua_expert_gridcell$dist_exprt) %>%
filter(!is.na(env.bio_10) &!is.na(env.bio_13) & !is.na(env.npp) & !is.na(env.nontree) & !is.na(acce) & !is.na(count) & !is.na(expert)) # remove NA's
<- rbind(PA_time1 %>% mutate(time=1), PA_time2 %>% mutate(time=2))
PA_time1_time2 <- rbind(PO_time1 %>% mutate(time=1), PO_time2 %>% mutate(time=2)) PO_time1_time2
- Read model
<- readRDS('D:/Flo/JAGS_models/nnasua_model.rds') # deleted after model output
fitted.model
# as.mcmc.rjags converts an rjags Object to an mcmc or mcmc.list Object.
<- mcmcplots::as.mcmc.rjags(fitted.model) fitted.model.mcmc
Model diagnostics
The fitted.model
is an object of class rjags
.
Code
# labels for the linear predictor `b`
<- plab("b",
L.fitted.model.b list(Covariate = c('Intercept',
'env.bio_10',
'env.bio_13',
'env.npp',
'env.nontree',
'expert',
sprintf('spline%i', 1:10)))) # changes with n.spl
# tibble object for the linear predictor `b` extracted from the rjags fitted model
<- ggmcmc::ggs(fitted.model.mcmc,
fitted.model.ggs.b par_labels = L.fitted.model.b,
family="^b\\[")
# diagnostics
::ggmcmc(fitted.model.ggs.b, file="docs/nnasua_model_diagnostics.pdf", param_page=3) ggmcmc
Plotting histograms
Plotting density plots
Plotting traceplots
Plotting running means
Plotting comparison of partial and full chain
Plotting autocorrelation plots
Plotting crosscorrelation plot
Plotting Potential Scale Reduction Factors
Plotting shrinkage of Potential Scale Reduction Factors
Plotting Number of effective independent draws
Plotting Geweke Diagnostic
Plotting caterpillar plot
Time taken to generate the report: 33 seconds.
Traceplot
Code
ggs_traceplot(fitted.model.ggs.b)
Rhat
Code
ggs_Rhat(fitted.model.ggs.b)
Probability of occurrence of Nasua nasua
For each period: time1 and time2, and their difference (time2-time1)
Code
<- fitted.model$BUGSoutput$mean$P.pred
P.pred <- data.frame(PO_time1_time2, P.pred)
preds <- preds[preds$time == 1,]
preds1 <- preds[preds$time == 2,]
preds2
<- latam_raster
rast <- NA
rast[] <- rast2 <- terra::rast(rast)
rast1
$pixel] <- preds1$P.pred
rast1[preds1$pixel] <- preds2$P.pred
rast2[preds2
<- rast1 %>% terra::mask(., vect(latam_land))
rast1 <- rast2 %>% terra::mask(., vect(latam_land))
rast2 names(rast1) <- 'time1'
names(rast2) <- 'time2'
# Map of the of the probability of occurrence in the first period (time1: 2000-2013)
<- tm_graticules(alpha = 0.3) +
time1MAP tm_shape(rast1) +
tm_raster(palette = 'Oranges', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the of the probability of occurrence in the second period (time2: 2014-2021)
<- tm_graticules(alpha = 0.3) +
time2MAP tm_shape(rast2) +
tm_raster(palette = 'Purples', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the of the change in the probability of occurrence (time2 - time1)
<- tm_graticules(alpha = 0.3) +
diffMAP tm_shape(rast2 - rast1) +
tm_raster(palette = 'PiYG', midpoint = 0, style= "cont", ) +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
time1MAP
Code
time2MAP
Code
diffMAP
Code
::tmap_save(tm = time1MAP, filename = 'docs/figs/time1MAP_SR_nnasua.svg', device = svglite::svglite)
tmap::tmap_save(tm = time2MAP, filename = 'docs/figs/time2MAP_SR_nnasua.svg', device = svglite::svglite) tmap
Standard deviation (SD) of the probability of occurrence of Nasua nasua
Code
<- fitted.model$BUGSoutput$sd$P.pred
P.pred.sd <- data.frame(PO_time1_time2, P.pred.sd)
preds.sd
<- preds.sd[preds.sd$time == 1,]
preds1.sd <- preds.sd[preds.sd$time == 2,]
preds2.sd
<- terra::rast(latam_raster)
rast.sd <- NA
rast.sd[] <- rast2.sd <- terra::rast(rast.sd)
rast1.sd
$pixel] <- preds1.sd$P.pred.sd
rast1.sd[preds1.sd$pixel] <- preds2.sd$P.pred.sd
rast2.sd[preds2.sd
<- rast1.sd %>% terra::mask(., vect(latam_land))
rast1.sd <- rast2.sd %>% terra::mask(., vect(latam_land))
rast2.sd names(rast1.sd) <- 'time1.sd'
names(rast2.sd) <- 'time2.sd'
# Map of the SD of the probability of occurrence of the area time1
<- tm_graticules(alpha = 0.3) +
time1MAP.sd tm_shape(rast1.sd) +
tm_raster(palette = 'Oranges', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the SD of the probability of occurrence of the area time2
<- tm_graticules(alpha = 0.3) +
time2MAP.sd tm_shape(rast2.sd) +
tm_raster(palette = 'Purples', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
time1MAP.sd
Code
time2MAP.sd
Bivariate map
Map of the difference including the Standard deviation (SD) of the probability of occurrence as the transparency of the layer.
Code
library(cols4all)
library(pals)
library(classInt)
library(stars)
= function(pal, nx = 3, ny = 3){
bivcol = substitute(pal)
tit if (is.function(pal))
= pal()
pal = length(pal)
ncol if (missing(nx))
= sqrt(ncol)
nx if (missing(ny))
= nx
ny image(matrix(1:ncol, nrow = ny), axes = FALSE, col = pal, asp = 1)
mtext(tit)
}
<- c4a("pu_gn_bivd", n=3, m=5)
nnasua.pal.pu_gn_bivd <- c(t(apply(nnasua.pal.pu_gn_bivd, 2, rev)))
nnasua.pal
###
<- fitted.model$BUGSoutput$sd$delta.Grid
pred.P.sd <- data.frame(PO_time1_time2, pred.P.sd=rep(pred.P.sd, 2))
preds.sd
<- terra::rast(latam_raster)
rast.sd <- NA
rast.sd[] <- terra::rast(rast.sd)
rast.sd
$pixel] <- preds.sd$pred.P.sd
rast.sd[preds.sd<- rast.sd %>% terra::mask(., vect(latam_land))
rast.sd names(rast.sd) <- c('diff')
# Map of the SD of the probability of occurrence of the area time2
<- tm_graticules(alpha = 0.3) +
delta.GridMAP.sd tm_shape(rast.sd) +
tm_raster(palette = 'Greys', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
delta.GridMAP.sd
Code
<- c(stars::st_as_stars(rast2-rast1), stars::st_as_stars(rast.sd))
rast.stars names(rast.stars) <- c('diff', 'sd')
par(mfrow=c(2,2))
hist(rast1)
hist(rast2)
hist(rast.stars['diff'])
hist(rast.stars['sd'])
Code
par(mfrow=c(1,1))
= function(x, var1, var2, nbins1, nbins2, style1, style2,fixedBreaks1, fixedBreaks2){
add_new_var = suppressWarnings(findCols(classIntervals(c(x[[var1]]),
class1 n = nbins1,
style = style1,
fixedBreaks1=fixedBreaks1)))
= suppressWarnings(findCols(classIntervals(c(x[[var2]]),
class2 n = nbins2,
style = style2,
fixedBreaks=fixedBreaks2)))
$new_var = class1 + nbins1 * (class2 - 1)
xreturn(x)
}
= add_new_var(rast.stars,
rast.bivariate var1 = "diff",
var2 = "sd",
nbins1 = 3,
nbins2 = 5,
style1 = "fixed",
fixedBreaks1=c(-1,-0.05, 0.05, 1),
style2 = "fixed",
fixedBreaks2=c(0, 0.05, 0.1, 0.15, 0.2, 0.3))
# See missing classes and update palette
<- seq(1,15,1)
all_classes <- as_tibble(rast.bivariate['new_var']) %>%
rast_classes distinct(new_var) %>% filter(!is.na(new_var)) %>% pull()
<- all_classes[!(all_classes %in% rast_classes)]
absent_classes
if (length(absent_classes)==0){
<- nnasua.pal
nnasua.new.pal else nnasua.new.pal <- nnasua.pal[-c(absent_classes)]
}
# Map of the of the change in the probability of occurrence (time2 - time1)
# according to the mean SD of the probability of occurrence (mean(time2.sd, time1.sd))
<- tm_graticules(alpha = 0.3) +
diffMAP.SD tm_shape(rast.bivariate) +
tm_raster("new_var", style= "cat", palette = nnasua.new.pal) +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
diffMAP.SD
Countries thinning
Code
<- cats(latam_countries)[[1]] #%>% mutate(value=value+1)
countryLevels <- levels(as.factor(PO_time1_time2$country))
rasterLevels <- countryLevels %>% filter(value %in% rasterLevels) %>%
countries_latam mutate(numLevel=1:length(rasterLevels)) %>% rename(country=countries)
<- ggmcmc::ggs(fitted.model.mcmc, family="^alpha")
fitted.model.ggs.alpha <- ci(fitted.model.ggs.alpha)
ci.alpha
<- bind_rows(ci.alpha[length(rasterLevels)+1,],
country_acce tibble(countries_latam, ci.alpha[1:length(rasterLevels),])) %>%
::select(-c(value, numLevel))
dplyr
#accessibility range for predictions
<- seq (0,0.5,by=0.01)
accessValues
#get common steepness
<- country_acce$median[country_acce$Parameter=="alpha1"]
commonSlope
#write function to get predictions for a given country
<- function(country){
getPreds #get country intercept
= country_acce$median[country_acce$country==country & !is.na(country_acce$country)]
countryIntercept #return all info
data.frame(country = country,
access = accessValues,
preds= countryIntercept * exp(((-1 * commonSlope)*accessValues)))
}
<- country_acce %>%
allPredictions filter(!is.na(country)) %>%
filter(country %in% countries$iso_a2) %>%
pull(country) %>%
map_dfr(getPreds)
<- left_join(as_tibble(allPredictions),
allPredictions %>% select(country=iso_a2, name_en) %>%
countries st_drop_geometry(), by='country') %>%
filter(country!='VG' & country!= 'TT' & country!= 'FK' & country!='AW')
# just for exploration - easier to see which county is doing which
<- ggplot(allPredictions)+
acce_country geom_line(aes(x = access, y = preds, colour = name_en), show.legend = F) +
::scale_color_viridis(option = 'turbo', discrete=TRUE) +
viridistheme_bw() +
facet_wrap(~name_en, ncol = 5) +
ylab("Probability of retention") + xlab("Accessibility")
acce_country
Code
# all countries
<- ggplot(allPredictions) +
acce_allcountries geom_line(aes(x = access, y = preds, colour = name_en), show.legend = F)+
::scale_color_viridis(option = 'turbo', discrete=TRUE) +
viridistheme_bw() +
ylab("Probability of retention") + xlab("Accessibility")
acce_allcountries
Effect of the environmental covariates on the intensity of the point process
Code
<- fitted.model.ggs.b %>%
caterpiller.params filter(grepl('env', Parameter)) %>%
mutate(Parameter=as.factor(ifelse(Parameter=='env.bio_10', 'mean temperature of warmest quarter',
ifelse(Parameter=='env.bio_13', 'precipitation of wettest month',
ifelse(Parameter=='env.npp', 'npp',
ifelse(Parameter=='env.nontree', 'percentage of no tree cover', Parameter)))))) %>%
ggs_caterpillar(line=0) +
theme_light() +
labs(y='', x='posterior densities')
caterpiller.params
Boxplot of posterior densities of the predicted area in both time periods
Code
<- ggmcmc::ggs(fitted.model.mcmc, family="^A")
fitted.model.ggs.A
# CI
::ci(fitted.model.ggs.A) ggmcmc
# A tibble: 2 x 6
Parameter low Low median High high
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A.time1 1491. 1496. 1520. 1543. 1547.
2 A.time2 1464. 1468. 1489. 1509. 1514.
Code
$BUGSoutput$summary['A.time2',] fitted.model
mean sd 2.5% 25% 50% 75%
1488.710651 12.597151 1464.143348 1480.292103 1488.667912 1497.046297
97.5% Rhat n.eff
1513.661840 1.015558 140.000000
Code
# fitted.model$BUGSoutput$mean$A.time2
$BUGSoutput$summary['A.time1',] fitted.model
mean sd 2.5% 25% 50% 75%
1519.444754 14.271148 1491.153586 1509.785758 1519.615449 1529.336054
97.5% Rhat n.eff
1546.878609 1.022265 96.000000
Code
# fitted.model$BUGSoutput$mean$A.time1
# boxplot
<- ggs_caterpillar(fitted.model.ggs.A, horizontal=FALSE, ) + theme_light(base_size = 14) +
range.boxplot labs(y='', x='Area (number of 100x100 km grid-cells)')
range.boxplot
Code
# CI
<- ggmcmc::ci(fitted.model.ggs.A) %>%
range.ci mutate(Parameter = fct_rev(Parameter)) %>%
ggplot(aes(x = Parameter, y = median, ymin = low, ymax = high)) +
geom_boxplot(orientation = 'y', size=1) +
stat_summary(fun=mean, geom="point",
shape=19, size=4, show.legend=FALSE) +
theme_light(base_size = 14) +
labs(x='', y='Area (number of 100x100 km grid-cells)')
range.ci
posterior distribution of range change (Area).
Code
<- ggmcmc::ggs(fitted.model.mcmc, family="^delta.A")
fitted.model.ggs.delta.A
# CI
::ci(fitted.model.ggs.delta.A) ggmcmc
# A tibble: 1 x 6
Parameter low Low median High high
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 delta.A -47.8 -44.7 -30.8 -16.6 -13.7
Code
$BUGSoutput$summary['delta.A',] fitted.model
mean sd 2.5% 25% 50% 75% 97.5%
-30.734103 8.689850 -47.783500 -36.493851 -30.805533 -25.018297 -13.658100
Rhat n.eff
1.013398 260.000000
Code
#densitiy
<- fitted.model.ggs.delta.A %>% group_by(Iteration) %>%
delta.A.plot summarise(area=median(value)) %>%
ggplot(aes(area)) +
geom_density(col='grey30', fill='black', alpha = 0.3, size=1) +
scale_y_continuous(breaks=c(0,0.0025,0.005, 0.0075, 0.01, 0.0125)) +
geom_abline(intercept = 0, slope=1, linetype=2, size=1) +
# vertical lines at 95% CI
stat_boxplot(geom = "vline", aes(xintercept = ..xmax..), size=0.5, col='red') +
stat_boxplot(geom = "vline", aes(xintercept = ..xmiddle..), size=0.5, col='red') +
stat_boxplot(geom = "vline", aes(xintercept = ..xmin..), size=0.5, col='red') +
theme_light(base_size = 14, base_line_size = 0.2) +
labs(y='Probability density', x=expression(Delta*'Area'))
delta.A.plot
posterior predictive checks
PO
Expected vs observed
Code
<- PO_time1_time2$count
counts <- fitted.model$BUGSoutput$mean$y.PO.new
counts.new <- fitted.model$BUGSoutput$mean$lambda
lambda <- data.frame(counts, counts.new, lambda)
pred.PO
# fitted.model$BUGSoutput$summary['fit.PO',]
# fitted.model$BUGSoutput$summary['fit.PO.new',]
<- ggplot(pred.PO, aes(x=counts, y=lambda), fill=NA) +
pp.PO geom_point(size=3, shape=21) +
xlim(c(0, 100)) +
ylim(c(0, 50)) +
labs(x='observed', y=expression(lambda), title='Presence-only') +
geom_abline(col='red') +
theme_bw()
<- ggplot(pred.PO, aes(x=counts, y=lambda), fill=NA) +
pp.PO.log10 geom_point(size=3, shape=21) +
scale_x_log10(limits=c(0.01, 100)) +
scale_y_log10(limits=c(0.01, 100)) +
coord_fixed(ratio=1) +
labs(x='observed (log scale)', y=expression(lambda*'(log scale)'), title='log10 scale') +
geom_abline(col='red') +
theme_bw()
| pp.PO.log10 pp.PO
Residual Diagnostics
Code
library(DHARMa)
<- fitted.model$BUGSoutput$sims.list$y.PO.new
simulations <- apply(fitted.model$BUGSoutput$sims.list$lambda, 2, median)
pred #dim(simulations)
<- createDHARMa(simulatedResponse = t(simulations),
sim observedResponse = PO_time1_time2$count,
fittedPredictedResponse = pred,
integerResponse = T)
plotSimulatedResiduals(sim)
Grid-level change
Code
<- as_tibble(rast2[PO_time2$pixel] - rast1[PO_time2$pixel]) %>% rename(range=time2)
range_change <- as_tibble(PO_time2$count - PO_time1$count) %>% rename(numRecord=value)
numRecord_change
<- bind_cols(range_change, numRecord_change) %>%
grid.level.change mutate(nonzero=ifelse(numRecord==0, '0', '>=1')) %>%
ggplot() +
geom_point(aes(y=range, x=numRecord, col=nonzero), size=1) +
geom_vline(xintercept=0, linetype=2, size=0.5) +
geom_hline(yintercept=0, linetype=2, size=0.5) +
labs(y = expression('Predicted grid-level range change (Ppred'['time2']*'-Ppred'['time1']*')'),
x= expression('Grid-level range change in number of records (Nrecords'['time2']*'-Nrecords'['time1']*')'),
col = 'Number of records\nper grid cell') +
theme_bw(base_size = 14)
grid.level.change
PA
Tjur R2
Code
<- PA_time1_time2$presabs
presabs <- fitted.model$BUGSoutput$mean$psi
psi <- data.frame(presabs, psi)
pred.PA
<- round(fitted.model$BUGSoutput$mean$r2_tjur, 3)
r2_tjur $BUGSoutput$summary['r2_tjur',] fitted.model
mean sd 2.5% 25% 50%
0.233141219 0.002806291 0.227375409 0.231300959 0.233205964
75% 97.5% Rhat n.eff
0.235059962 0.238454896 1.001126633 13000.000000000
Code
<- ggplot(pred.PA, aes(x=presabs, y=psi, col=presabs)) +
pp.PA geom_jitter(height = 0, width = .05, size=1) +
scale_x_continuous(breaks=seq(0,1,0.25)) + scale_colour_binned() +
labs(x='observed', y=expression(psi), title='Presence-absence') +
stat_summary(
fun = mean,
geom = "errorbar",
aes(ymax = ..y.., ymin = ..y..),
width = 0.2, size=2) +
theme_bw() + theme(legend.position = 'none')+
annotate(geom="text", x=0.5, y=0.5,
label=paste('Tjur R-squared = ', r2_tjur))
pp.PA
AUC
Code
<- bind_cols(sens=fitted.model$BUGSoutput$mean$sens,
auc.sens.fpr fpr=fitted.model$BUGSoutput$mean$fpr)
<- round(fitted.model$BUGSoutput$mean$auc, 3)
auc.value
ggplot(auc.sens.fpr, aes(fpr, sens)) +
geom_line() + geom_point() +
labs(x='1 - Specificity', y='Sensitivity') +
annotate(geom="text", x=0.5, y=0.5,
label=paste('AUC = ', auc.value)) +
theme_bw()
Code
$BUGSoutput$summary['auc',] fitted.model
mean sd 2.5% 25% 50%
0.640146868 0.002549939 0.634830350 0.638513400 0.640242881
75% 97.5% Rhat n.eff
0.641882328 0.644912060 1.003340141 850.000000000