library(patchwork)
library(mcmcplots)
library(ggmcmc)
library(tidybayes)
library(tmap)
tmap_mode("plot")
library(terra)
library(sf)
sf::sf_use_s2(FALSE)
library(tidyverse)
# options
options(scipen = 999)Cerdocyon thous Model Outputs
Model outputs for Cerdocyon thous.
- R Libraries
- Basemaps
equalareaCRS <- '+proj=laea +lon_0=-73.125 +lat_0=0 +datum=WGS84 +units=m +no_defs'
latam <- st_read('data/latam.gpkg', layer = 'latam', quiet = T)
countries <- st_read('data/latam.gpkg', layer = 'countries', quiet = T)
latam_land <- st_read('data/latam.gpkg', layer = 'latam_land', quiet = T)
latam_raster <- rast('data/latam_raster.tif', lyrs='latam')
latam_countries <- rast('data/latam_raster.tif', lyrs='countries')
cthous_IUCN <- sf::st_read('big_data/cthous_IUCN.shp', quiet = T) %>% sf::st_transform(crs=equalareaCRS)- Species data and covariates
# Presence-absence data
cthous_expert_blob_time1 <- readRDS('data/species_POPA_data/cthous_expert_blob_time1.rds')
cthous_expert_blob_time2 <- readRDS('data/species_POPA_data/cthous_expert_blob_time2.rds')
PA_time1 <- readRDS('data/species_POPA_data/data_cthous_PA_time1.rds') %>%
cbind(expert=cthous_expert_blob_time1) %>%
filter(!is.na(env.bio_16) &!is.na(env.bio_19) & !is.na(env.npp) & !is.na(env.tree) & !is.na(expert)) # remove NA's
PA_time2 <- readRDS('data/species_POPA_data/data_cthous_PA_time2.rds') %>%
cbind(expert=cthous_expert_blob_time2) %>%
filter(!is.na(env.bio_16) &!is.na(env.bio_19) & !is.na(env.npp) & !is.na(env.tree) & !is.na(expert)) # remove NA's
# Presence-only data
cthous_expert_gridcell <- readRDS('data/species_POPA_data/cthous_expert_gridcell.rds')
PO_time1 <- readRDS('data/species_POPA_data/data_cthous_PO_time1.rds') %>%
cbind(expert=cthous_expert_gridcell$dist_exprt) %>%
filter(!is.na(env.bio_16) &!is.na(env.bio_19) & !is.na(env.npp) & !is.na(env.tree) & !is.na(acce) & !is.na(count) & !is.na(expert)) # remove NA's
PO_time2 <- readRDS('data/species_POPA_data/data_cthous_PO_time2.rds') %>%
cbind(expert=cthous_expert_gridcell$dist_exprt) %>%
filter(!is.na(env.bio_16) &!is.na(env.bio_19) & !is.na(env.npp) & !is.na(env.tree) & !is.na(acce) & !is.na(count) & !is.na(expert)) # remove NA's
PA_time1_time2 <- rbind(PA_time1 %>% mutate(time=1), PA_time2 %>% mutate(time=2))
PO_time1_time2 <- rbind(PO_time1 %>% mutate(time=1), PO_time2 %>% mutate(time=2)) - Read model
fitted.model <- readRDS('D:/Flo/JAGS_models/cthous_model.rds') # deleted after model output
# fitted.model <- readRDS('big_data/cthous_model.rds') # deleted after model output
# as.mcmc.rjags converts an rjags Object to an mcmc or mcmc.list Object.
fitted.model.mcmc <- mcmcplots::as.mcmc.rjags(fitted.model)Model diagnostics
The fitted.model is an object of class rjags.
Code
# labels for the linear predictor `b`
L.fitted.model.b <- plab("b",
list(Covariate = c('Intercept',
'env.bio_16',
'env.bio_19',
'env.npp',
'env.tree',
'expert',
sprintf('spline%i', 1:16)))) # changes with n.spl
# tibble object for the linear predictor `b` extracted from the rjags fitted model
fitted.model.ggs.b <- ggmcmc::ggs(fitted.model.mcmc,
par_labels = L.fitted.model.b,
family="^b\\[")
# diagnostics
ggmcmc::ggmcmc(fitted.model.ggs.b, file="docs/cthous_model_diagnostics.pdf", param_page=3)Plotting histograms
Plotting density plots
Plotting traceplots
Plotting running means
Plotting comparison of partial and full chain
Plotting autocorrelation plots
Plotting crosscorrelation plot
Plotting Potential Scale Reduction Factors
Plotting shrinkage of Potential Scale Reduction Factors
Plotting Number of effective independent draws
Plotting Geweke Diagnostic
Plotting caterpillar plot
Time taken to generate the report: 32 seconds.
Traceplot
Code
ggs_traceplot(fitted.model.ggs.b)
Rhat
Code
ggs_Rhat(fitted.model.ggs.b)
Probability of occurrence of Cerdocyon thous
For each period: time1 and time2, and their difference (time2-time1)
Code
P.pred <- fitted.model$BUGSoutput$mean$P.pred
preds <- data.frame(PO_time1_time2, P.pred)
preds1 <- preds[preds$time == 1,]
preds2 <- preds[preds$time == 2,]
rast <- latam_raster
rast[] <- NA
rast1 <- rast2 <- terra::rast(rast)
rast1[preds1$pixel] <- preds1$P.pred
rast2[preds2$pixel] <- preds2$P.pred
rast1 <- rast1 %>% terra::mask(., vect(latam_land))
rast2 <- rast2 %>% terra::mask(., vect(latam_land))
names(rast1) <- 'time1'
names(rast2) <- 'time2'
# Map of the of the probability of occurrence in the first period (time1: 2000-2013)
time1MAP <- tm_graticules(alpha = 0.3) +
tm_shape(rast1) +
tm_raster(palette = 'Oranges', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the of the probability of occurrence in the second period (time2: 2014-2021)
time2MAP <- tm_graticules(alpha = 0.3) +
tm_shape(rast2) +
tm_raster(palette = 'Purples', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the of the change in the probability of occurrence (time2 - time1)
diffMAP <- tm_graticules(alpha = 0.3) +
tm_shape(rast2 - rast1) +
tm_raster(palette = 'PiYG', midpoint = 0, style= "cont", ) +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
time1MAP
Code
time2MAP
Code
diffMAP
Code
tmap::tmap_save(tm = time1MAP, filename = 'docs/figs/time1MAP_SR_cthous.svg', device = svglite::svglite)
tmap::tmap_save(tm = time2MAP, filename = 'docs/figs/time2MAP_SR_cthous.svg', device = svglite::svglite)Standard deviation (SD) of the probability of occurrence of Cerdocyon thous
Code
P.pred.sd <- fitted.model$BUGSoutput$sd$P.pred
preds.sd <- data.frame(PO_time1_time2, P.pred.sd)
preds1.sd <- preds.sd[preds.sd$time == 1,]
preds2.sd <- preds.sd[preds.sd$time == 2,]
rast.sd <- terra::rast(latam_raster)
rast.sd[] <- NA
rast1.sd <- rast2.sd <- terra::rast(rast.sd)
rast1.sd[preds1.sd$pixel] <- preds1.sd$P.pred.sd
rast2.sd[preds2.sd$pixel] <- preds2.sd$P.pred.sd
rast1.sd <- rast1.sd %>% terra::mask(., vect(latam_land))
rast2.sd <- rast2.sd %>% terra::mask(., vect(latam_land))
names(rast1.sd) <- 'time1.sd'
names(rast2.sd) <- 'time2.sd'
# Map of the SD of the probability of occurrence of the area time1
time1MAP.sd <- tm_graticules(alpha = 0.3) +
tm_shape(rast1.sd) +
tm_raster(palette = 'Oranges', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
# Map of the SD of the probability of occurrence of the area time2
time2MAP.sd <- tm_graticules(alpha = 0.3) +
tm_shape(rast2.sd) +
tm_raster(palette = 'Purples', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
time1MAP.sd
Code
time2MAP.sd
Bivariate map
Map of the difference including the Standard deviation (SD) of the probability of occurrence as the transparency of the layer.
Code
library(cols4all)
library(pals)
library(classInt)
library(stars)
bivcol = function(pal, nx = 3, ny = 3){
tit = substitute(pal)
if (is.function(pal))
pal = pal()
ncol = length(pal)
if (missing(nx))
nx = sqrt(ncol)
if (missing(ny))
ny = nx
image(matrix(1:ncol, nrow = ny), axes = FALSE, col = pal, asp = 1)
mtext(tit)
}
cthous.pal.pu_gn_bivd <- c4a("pu_gn_bivd", n=3, m=5)
cthous.pal <- c(t(apply(cthous.pal.pu_gn_bivd, 2, rev)))
###
pred.P.sd <- fitted.model$BUGSoutput$sd$delta.Grid
preds.sd <- data.frame(PO_time1_time2, pred.P.sd=rep(pred.P.sd, 2))
rast.sd <- terra::rast(latam_raster)
rast.sd[] <- NA
rast.sd <- terra::rast(rast.sd)
rast.sd[preds.sd$pixel] <- preds.sd$pred.P.sd
rast.sd <- rast.sd %>% terra::mask(., vect(latam_land))
names(rast.sd) <- c('diff')
# Map of the SD of the probability of occurrence of the area time2
delta.GridMAP.sd <- tm_graticules(alpha = 0.3) +
tm_shape(rast.sd) +
tm_raster(palette = 'Greys', midpoint = NA, style= "cont") +
tm_shape(countries) +
tm_borders(alpha = 0.3) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
delta.GridMAP.sd
Code
rast.stars <- c(stars::st_as_stars(rast2-rast1), stars::st_as_stars(rast.sd))
names(rast.stars) <- c('diff', 'sd')
par(mfrow=c(2,2))
hist(rast1)
hist(rast2)
hist(rast.stars['diff'])
hist(rast.stars['sd'])
Code
par(mfrow=c(1,1))
add_new_var = function(x, var1, var2, nbins1, nbins2, style1, style2,fixedBreaks1, fixedBreaks2){
class1 = suppressWarnings(findCols(classIntervals(c(x[[var1]]),
n = nbins1,
style = style1,
fixedBreaks1=fixedBreaks1)))
class2 = suppressWarnings(findCols(classIntervals(c(x[[var2]]),
n = nbins2,
style = style2,
fixedBreaks=fixedBreaks2)))
x$new_var = class1 + nbins1 * (class2 - 1)
return(x)
}
rast.bivariate = add_new_var(rast.stars,
var1 = "diff",
var2 = "sd",
nbins1 = 3,
nbins2 = 5,
style1 = "fixed",
fixedBreaks1=c(-1,-0.05, 0.05, 1),
style2 = "fixed",
fixedBreaks2=c(0, 0.05, 0.1, 0.15, 0.2, 0.3))
# See missing classes and update palette
all_classes <- seq(1,15,1)
rast_classes <- as_tibble(rast.bivariate['new_var']) %>%
distinct(new_var) %>% filter(!is.na(new_var)) %>% pull()
absent_classes <- all_classes[!(all_classes %in% rast_classes)]
if (length(absent_classes)==0){
cthous.new.pal <- cthous.pal
} else cthous.new.pal <- cthous.pal[-c(absent_classes)]
# Map of the of the change in the probability of occurrence (time2 - time1)
# according to the mean SD of the probability of occurrence (mean(time2.sd, time1.sd))
diffMAP.SD <- tm_graticules(alpha = 0.3) +
tm_shape(rast.bivariate) +
tm_raster("new_var", style= "cat", palette = cthous.new.pal) +
tm_shape(countries) +
tm_borders(col='grey60', alpha = 0.4) +
tm_layout(legend.outside = T, frame.lwd = 0.3, scale=1.2, legend.outside.size = 0.1)
diffMAP.SD
Code
tmap::tmap_save(tm = diffMAP.SD, filename = 'docs/figs/diffMAP_SD_cthous.svg', device = svglite::svglite)Countries thinning
Code
countryLevels <- cats(latam_countries)[[1]] #%>% mutate(value=value+1)
rasterLevels <- levels(as.factor(PO_time1_time2$country))
countries_latam <- countryLevels %>% filter(value %in% rasterLevels) %>%
mutate(numLevel=1:length(rasterLevels)) %>% rename(country=countries)
fitted.model.ggs.alpha <- ggmcmc::ggs(fitted.model.mcmc, family="^alpha")
ci.alpha <- ci(fitted.model.ggs.alpha)
country_acce <- bind_rows(ci.alpha[length(rasterLevels)+1,],
tibble(countries_latam, ci.alpha[1:length(rasterLevels),])) %>%
dplyr::select(-c(value, numLevel))
#accessibility range for predictions
accessValues <- seq (0,0.5,by=0.01)
#get common steepness
commonSlope <- country_acce$median[country_acce$Parameter=="alpha1"]
#write function to get predictions for a given country
getPreds <- function(country){
#get country intercept
countryIntercept = country_acce$median[country_acce$country==country & !is.na(country_acce$country)]
#return all info
data.frame(country = country,
access = accessValues,
preds= countryIntercept * exp(((-1 * commonSlope)*accessValues)))
}
allPredictions <- country_acce %>%
filter(!is.na(country)) %>%
filter(country %in% countries$iso_a2) %>%
pull(country) %>%
map_dfr(getPreds)
allPredictions <- left_join(as_tibble(allPredictions),
countries %>% select(country=iso_a2, name_en) %>%
st_drop_geometry(), by='country') %>%
filter(country!='VG' & country!= 'TT' & country!= 'FK' & country!='AW')
# just for exploration - easier to see which county is doing which
acce_country <- ggplot(allPredictions)+
geom_line(aes(x = access, y = preds, colour = name_en), show.legend = F) +
viridis::scale_color_viridis(option = 'turbo', discrete=TRUE) +
theme_bw() +
facet_wrap(~name_en, ncol = 5) +
ylab("Probability of retention") + xlab("Accessibility")
acce_country
Code
# all countries
acce_allcountries <- ggplot(allPredictions) +
geom_line(aes(x = access, y = preds, colour = name_en), show.legend = F)+
viridis::scale_color_viridis(option = 'turbo', discrete=TRUE) +
theme_bw() +
ylab("Probability of retention") + xlab("Accessibility")
acce_allcountries
Effect of the environmental covariates on the intensity of the point process
Code
caterpiller.params <- fitted.model.ggs.b %>%
filter(grepl('env', Parameter)) %>%
mutate(Parameter=as.factor(ifelse(Parameter=='env.bio_16', 'precipitation of wettest quarter',
ifelse(Parameter=='env.tree', 'percentage of tree cover',
ifelse(Parameter=='env.npp', 'npp',
ifelse(Parameter=='env.bio_19', 'precipitation of coldest quarter', Parameter)))))) %>%
ggs_caterpillar(line=0) +
theme_light() +
labs(y='', x='posterior densities')
caterpiller.params
Boxplot of posterior densities of the predicted area in both time periods
Code
fitted.model.ggs.A <- ggmcmc::ggs(fitted.model.mcmc, family="^A")
# CI
ggmcmc::ci(fitted.model.ggs.A)# A tibble: 2 x 6
Parameter low Low median High high
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A.time1 1325. 1338. 1408. 1469. 1480.
2 A.time2 1324. 1337. 1408. 1468. 1480.
Code
fitted.model$BUGSoutput$summary['A.time2',] mean sd 2.5% 25% 50% 75%
1405.796629 39.603611 1323.528844 1379.885276 1407.606718 1433.031393
97.5% Rhat n.eff
1479.815177 1.003298 860.000000
Code
# fitted.model$BUGSoutput$mean$A.time2
fitted.model$BUGSoutput$summary['A.time1',] mean sd 2.5% 25% 50% 75%
1406.448696 39.671789 1324.706958 1380.090703 1408.422242 1434.034566
97.5% Rhat n.eff
1479.593790 1.002962 1000.000000
Code
# fitted.model$BUGSoutput$mean$A.time1
# boxplot
range.boxplot <- ggs_caterpillar(fitted.model.ggs.A, horizontal=FALSE, ) + theme_light(base_size = 14) +
labs(y='', x='Area (number of 100x100 km grid-cells)')
range.boxplot
Code
# CI
range.ci <- ggmcmc::ci(fitted.model.ggs.A) %>%
mutate(Parameter = fct_rev(Parameter)) %>%
ggplot(aes(x = Parameter, y = median, ymin = low, ymax = high)) +
geom_boxplot(orientation = 'y', size=1) +
stat_summary(fun=mean, geom="point",
shape=19, size=4, show.legend=FALSE) +
theme_light(base_size = 14) +
labs(x='', y='Area (number of 100x100 km grid-cells)')
range.ci
posterior distribution of range change (Area).
Code
fitted.model.ggs.delta.A <- ggmcmc::ggs(fitted.model.mcmc, family="^delta.A")
# CI
ggmcmc::ci(fitted.model.ggs.delta.A)# A tibble: 1 x 6
Parameter low Low median High high
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 delta.A -18.9 -16.1 -0.815 15.1 18.4
Code
fitted.model$BUGSoutput$summary['delta.A',] mean sd 2.5% 25% 50% 75%
-0.6520677 9.5585529 -18.9016979 -7.1932727 -0.8145097 5.7571632
97.5% Rhat n.eff
18.3706804 1.0017587 2500.0000000
Code
#densitiy
delta.A.plot <- fitted.model.ggs.delta.A %>% group_by(Iteration) %>%
summarise(area=median(value)) %>%
ggplot(aes(area)) +
geom_density(col='grey30', fill='black', alpha = 0.3, size=1) +
scale_y_continuous(breaks=c(0,0.0025,0.005, 0.0075, 0.01, 0.0125)) +
geom_abline(intercept = 0, slope=1, linetype=2, size=1) +
# vertical lines at 95% CI
stat_boxplot(geom = "vline", aes(xintercept = ..xmax..), size=0.5, col='red') +
stat_boxplot(geom = "vline", aes(xintercept = ..xmiddle..), size=0.5, col='red') +
stat_boxplot(geom = "vline", aes(xintercept = ..xmin..), size=0.5, col='red') +
theme_light(base_size = 14, base_line_size = 0.2) +
labs(y='Probability density', x=expression(Delta*'Area'))
delta.A.plot
Code
ggsave(delta.A.plot, filename='docs/figs/delta_A_cthous.svg', device = 'svg', dpi=300)posterior predictive checks
PO
Expected vs observed
Code
counts <- PO_time1_time2$count
counts.new <- fitted.model$BUGSoutput$mean$y.PO.new
lambda <- fitted.model$BUGSoutput$mean$lambda
pred.PO <- data.frame(counts, counts.new, lambda)
# fitted.model$BUGSoutput$summary['fit.PO',]
# fitted.model$BUGSoutput$summary['fit.PO.new',]
pp.PO <- ggplot(pred.PO, aes(x=counts, y=lambda), fill=NA) +
geom_point(size=3, shape=21) +
xlim(c(0, 100)) +
ylim(c(0, 50)) +
labs(x='observed', y=expression(lambda), title='Presence-only') +
geom_abline(col='red') +
theme_bw()
pp.PO.log10 <- ggplot(pred.PO, aes(x=counts, y=lambda), fill=NA) +
geom_point(size=3, shape=21) +
scale_x_log10(limits=c(0.01, 100)) +
scale_y_log10(limits=c(0.01, 100)) +
coord_fixed(ratio=1) +
labs(x='observed (log scale)', y=expression(lambda*'(log scale)'), title='log10 scale') +
geom_abline(col='red') +
theme_bw()
pp.PO | pp.PO.log10
Residual Diagnostics
Code
library(DHARMa)
simulations <- fitted.model$BUGSoutput$sims.list$y.PO.new
pred <- apply(fitted.model$BUGSoutput$sims.list$lambda, 2, median)
#dim(simulations)
sim <- createDHARMa(simulatedResponse = t(simulations),
observedResponse = PO_time1_time2$count,
fittedPredictedResponse = pred,
integerResponse = T)
plotSimulatedResiduals(sim)
Grid-level change
Code
range_change <- as_tibble(rast2[PO_time2$pixel] - rast1[PO_time2$pixel]) %>% rename(range=time2)
numRecord_change <- as_tibble(PO_time2$count - PO_time1$count) %>% rename(numRecord=value)
grid.level.change <- bind_cols(range_change, numRecord_change) %>%
mutate(nonzero=ifelse(numRecord==0, '0', '>=1')) %>%
ggplot() +
geom_point(aes(y=range, x=numRecord, col=nonzero), size=1) +
geom_vline(xintercept=0, linetype=2, size=0.5) +
geom_hline(yintercept=0, linetype=2, size=0.5) +
labs(y = expression('Predicted grid-level range change (Ppred'['time2']*'-Ppred'['time1']*')'),
x= expression('Grid-level range change in number of records (Nrecords'['time2']*'-Nrecords'['time1']*')'),
col = 'Number of records\nper grid cell') +
theme_bw(base_size = 14)
grid.level.change
PA
Tjur R2
Code
presabs <- PA_time1_time2$presabs
psi <- fitted.model$BUGSoutput$mean$psi
pred.PA <- data.frame(presabs, psi)
r2_tjur <- round(fitted.model$BUGSoutput$mean$r2_tjur, 3)
fitted.model$BUGSoutput$summary['r2_tjur',] mean sd 2.5% 25% 50%
0.274480158 0.005564554 0.263171394 0.270803954 0.274596102
75% 97.5% Rhat n.eff
0.278286565 0.285113331 1.002076443 1800.000000000
Code
pp.PA <- ggplot(pred.PA, aes(x=presabs, y=psi, col=presabs)) +
geom_jitter(height = 0, width = .05, size=1) +
scale_x_continuous(breaks=seq(0,1,0.25)) + scale_colour_binned() +
labs(x='observed', y=expression(psi), title='Presence-absence') +
stat_summary(
fun = mean,
geom = "errorbar",
aes(ymax = ..y.., ymin = ..y..),
width = 0.2, size=2) +
theme_bw() + theme(legend.position = 'none')+
annotate(geom="text", x=0.5, y=0.5,
label=paste('Tjur R-squared = ', r2_tjur))
pp.PA
AUC
Code
auc.sens.fpr <- bind_cols(sens=fitted.model$BUGSoutput$mean$sens,
fpr=fitted.model$BUGSoutput$mean$fpr)
auc.value <- round(fitted.model$BUGSoutput$mean$auc, 3)
ggplot(auc.sens.fpr, aes(fpr, sens)) +
geom_line() + geom_point() +
labs(x='1 - Specificity', y='Sensitivity') +
annotate(geom="text", x=0.5, y=0.5,
label=paste('AUC = ', auc.value)) +
theme_bw()
Code
fitted.model$BUGSoutput$summary['auc',] mean sd 2.5% 25% 50%
0.705102845 0.003818685 0.697702034 0.702493244 0.705106811
75% 97.5% Rhat n.eff
0.707708543 0.712547143 1.001515465 3700.000000000